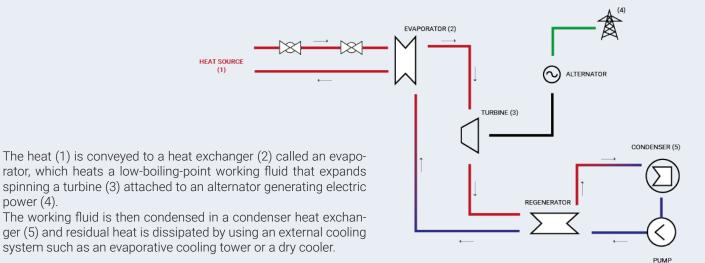


ORGANIC RANKINE CYCLE

POWER GENERATION FROM WASTE HEAT

- Recover heat that would otherwise be lost and convert it into electricity
- Options for low operating temperatures.
- Produce clean electricity with zero emissions.

OIL & GAS



TECHNOLOGY

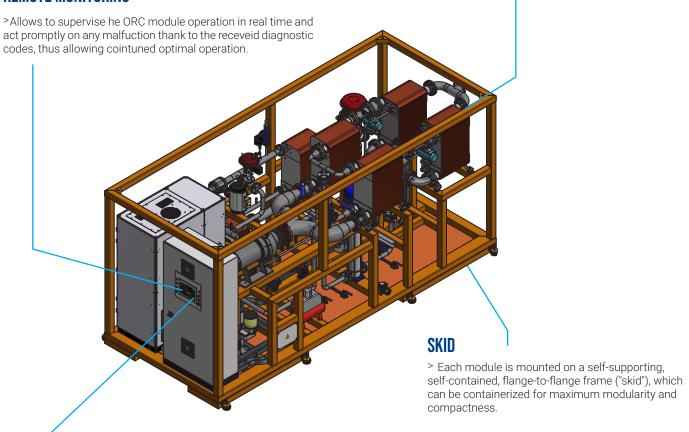
ADVANTAGES

power (4).

We provide **custom solution** for each case study depending on the request and need of the single client.

Use of safe/green, non-toxic, non-flammable and ozone-friendly working fluid. No atmospheric emissions.

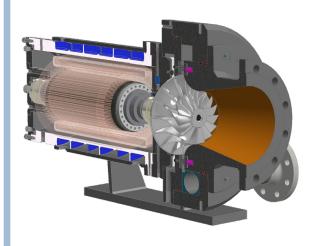
Permanent testing area where the plant is subjected to extensive testing and fine-tuned in operating conditions similar to those present where it will then be installed.


Simplification of retrofitting to existing systems, making the system reliable and allowing exceptional recovery efficiency.

ORC SYSTEM - TECHNICAL NOTES

HEAT EXCHANGERS

- >Small size, they occupy up to 10% of the space.
- >They can work with minimal temperature differences between cooling fluid and cooled fluid.
- >Low load losses.
- >Resistance to dirt and corrosion.


REMOTE MONITORING

CONTROL PANEL

> An integrated remote control system grants the client and technical assistance personnel full remote monitoring and management capabilities through LAN, WAN and the Web.

TURBINE

- > Manufacture of full-custom turbines and modules perfectly tailored to the available thermal power and temperature specifications.
- > Radial flow and efficiencies up to 16%.
- > It can modulate up to 50% of the electric power produced by the machine
- > Extensive use of ceramic bearings guarantee a longer service life and maximum relaibility.

SERIES

ULH

Solution to exploit low-temperature thermal sources.

CHP

Solution versatile combined heat & power generation systems.

	ZE-30-ULH	ZE-40-ULH	ZE-50-ULH	ZE-100-ULH	ZE-105-CHP
Thermal Energy Input	350 kWt	450 kWt	550 kWt	1200 kWt	1280 kWt
Electric power output	30 kWe	40 kWe	50 kWe	100 kWe	105 kWe
System Efficiency	8.50%	8.90%	9.10%	8.30%	8.20%
Interfaces		Overheated Water (≥160°C)			

LT

Solution for small-scale primary power generation.

ZE-75-LT ZE-100-LT ZE-150-LT ZE-175-LT ZE-200-LT ZE-250-LT ZE-500-LT

Thermal Energy Input	550 kWt	740 kWt	1100 kWt	1280 kWt	1400 kWt	1560 kWt	2909 kWt
Electric power output	75 kWe	100 kWe	150 kWe	175 kWe	200 kWe	250 kWe	495 kWe
System Efficiency	13.60%	13.50%	13.60%	13.60%	14.30%	16.00%	17.00%
Interfaces	Pressurized, Overheated water (≥160°C)					Pressuri- zed water (175°C)	Diathermic Oil (225°C)

SERVICES

FEASIBILITY STUDY BUSINESS PLAN AND ROI

DESIGN OF THE OVERALL SYSTEM

MAINTENANCE

Study of the parameters provided and determination of suitable ORC module.

Analysis of the economic parameters profitability of the plant.

Basic engineering, preliminary design of the extra ORC components. The module require only one stop per year for the scheduled maintenance.